
Classical scattering in Liouville field theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 7217

(http://iopscience.iop.org/0305-4470/27/21/036)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 22:13

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/21
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J, Phys. A: Math. Gen. 27 (1994) 7217-7233. Printed in the UK 

Classical scattering in Liouville field theory 

I M Khamitovt 
m o r  Technologies Inc. PO Box 116. St Petersburg 199155, Russia 

Received 21 February 1994 

Abstract. A detailed desuiption of classical scattering in Liouville field theory (w) is 
presented. Contrary to widespread belief, Lm scaltering is shown to be non-trivial, although it 
is finite-dimensional in some sense. In particular, for certain phase spaces. the LFT S-mnMx is 
represented as a transformation of the Poisson 5 0 U p  SL(2, R). The completeness and conformal 
invaxiance of Ule scattering are also inccated. Singular fields are treated on an equal footing 
with regular ones. except that only the latter are given a consistent Hamiltonian interpretation. 
A number of unexpected peculixities of LFT scattering are revealed First, for some e x ~ ~ p t i ~ n a l  
field configurations. the asymptotic fields are not solutions of d'Alembert's equation, rather they 
are a sum of the d'Alembeti and Liouville components. Second. the scattering OCCUIS in 'two or 
three spaces'. And last depending on the choice of the algebra of ObseNables, the conventional 
splitting of the d'AlembeR field into leftward and rightward components is either in general 
impossible or essentially non-unique. 

1. Introduction 

It is widely believed that there is no scattering in Liouville field theory ( L m )  [1-5]. This 
belief, however, is in direct contradiction to some of Dzhordzhadze's results on the classical 
Liouville equation [6]. For convenience of discussion, we shall formulate the relevant part 
of Dzhordzhadze's paper in the following form. 

Proposition 161. Let O(t, x )  E C2(W2) be a real solution of Liouville's equation: 

For this solution, define a tangent field A,(t, x )  by the following conditions (5  is a real 
parameter): 

(1) for all 5 B IF., A, E Cz(Rz) and OA, = 0; 
(2) A d r , x )  = ' W , x ) ,  $Ar(f,x)lr=i = $@(f,x)l,=,. (1.2) 

Then 
(1) for all ( f , x )  E R2 there exist lim,,+,A,(t,x) 

(3) Ai: # A,,, i.e. the S-m&ix always differs from unity. 

Ap( t ,x ) ;  
(2)  AWL E Cz(Rz) and UAm =0; 

t E-mail address: khamitov@dkor-a.spb.su 
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The authors of the paper [3] disagreed with Dzhordzhadze and claimed that the classical 
LFT S-matrix was trivial, but their argument was indirect, i.e. not based on investigation of 
the spacetime behaviour of the fundamental field Q, and hencc inconclusive. On the other 
hand, we have checked Dzhordzhadze’s assertions and found them to be perfectly comect. 
Basing ourselves on our previous work [7], we describe here the LFT classical scattering, 
as well as its Hamiltonian interpretation, in more detail. The quantum scattering will be 
discussed in a subsequent paper [ 131. 

We have found the LFT classical scattering to be non-trivial, complete, and conformally 
invariant. Since the conformal transformations may connect the states of arbitrary energy 
and momentum, the last property (conformal invariance) implies that the scattering is purely 
intemal, i.e. independent of energy and momentum. This tempts one to conclude wrongly 
that the S-matrix is unity, the more so as the fundamental field is scalar. One should not 
fall into this trap. Perhaps the most interesting result is that the LFT scattering is essentially 
finite-dimensional, and, for some phase spaces, it is possible to represent the S-matrix in 
a particularly simple form as a transformation of the Poisson group SL(2 ,  R). Also, three 
curious phenomena are worthy of note. First. for some exceptional field configurations, 
the asymptotic fields are not solutions of d’Alembert’s equation, rather they are a sum of 
the d’Alembert and Liouville components. Second, the scattering occurs in ‘two or three 
spaces’ (see comment 3 below). And last, the conventional splitting of the d’Alembert field 
into leftward and rightward components is in general impossible if some natural algebra of 
admissible functionals (observables) is used. Also, after natural extension of the admissible 
algebra such splitting becomes possible but essentially non-unique. Now some comments 
on the above proposition. 

(1) Note that no restrictions are imposed on behaviour of the fundamental field Q at 
spatial infinity. We shall impose some natural boundw conditions, which, among other 
things, allow the Poisson structure to be introduced [7]. 

(2) For singular solutions [7-lo], the above proposition cannot in general hold true, 
e.g. the following solution 

exhibits no scattering. This is rather an exceptional behaviour. We shall treat the singular 
solutions on an equal footing with the regular ones, except that only the latter will be given 
a consistent Hamiltonian interpretation. Due to our choice of the phase spaces of the model, 
the singular solutions always exhibit non-trivial scattering. Solution (1.3) is not a counter- 
example, because it does not belong to any of the adopted phase spaces. Nevertheless, this 
solution will emerge later on, but as a part of the asymptotic field for some exceptional field 
configurations. 

(3) The asymptotic fields are also uniquely fixed in the present context by the following 
limiting relation, which we shall exploit in the main body of the paper: 

V X , U E W , I U I S ~  3 *++CO lim I Q ( t , ~ + ~ t ) - A ~ ( f , x + ~ f ) l = 0 .  (1.4) 

This asymptotic condition permits avoiding the introduction of the tangent field A,.  The 
reason for A, being unwanted is as follows: the boundary conditions and singulaxities which 
are appropriate for the Cauchy data for d’Alembert’s equation differ from those appropriate 
for !he Cauchy data in LFT, so the equalities (1.2) appear to be inconsistent. One can 
interpret this situation in terms of the scattering in ‘two spaces’. Moreover, for some phase 
spaces, the set of in-fields does not coincide with the set of out-fields, i.e. for these LFT 
phase spaces, scattering occurs in ‘three spaces’, in which case it is impossible for the 
S-matrix to be represented in the abovementioned simple form. 
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2. Asymptotic fields and the S-matrix 

We begin with the description of the field configurations for which scattering will be studied. 
?he details can be found in [7]. Let p(x) and n(x) be the Cauchy data corresponding to 
the solution O(t, x ) ,  i.e. 

p(x) = Q ( 0 . x )  x ( x )  = 

It is easier to describe all the conditions imposed on (p and K in terms of two potentials 

First, it is required that U+ E S@), where S(B) is a real Schwartz space consisting of real 
Cm-smooth functions of x E B that fall off with all their derivatives more rapidly than 
any power of x- I  as 1x1 + CO. Second, both potentials U* must not possess a virtual 
eigenvalue. To make these requirements more exact and facilitate M e r  considerations it 
is convenient to introduce some notations. 

Schrodinger’s equation - f ” ( x )  + U ( x ) f ( x )  = 0 with U E S(B) possesses solutions 
exhibiting the following asymptotic behaviour: 

where CY, +4 and 19 are some x-independent constants (depending on U), and a notation similar 
to o ( x )  is used: let q ( x )  be a real Cm function such that ~ ( x )  = 0 if x < 0, and q ( x )  = 1 
if x > 1, then for j E CW(R), the equality f ( x )  = s + ( x )  means that q j  E Sg), and 
j ( x )  = s-(x)  means that f ( - x )  = s+(x).  For example, tanhx = 1 +st(x) = -1 + s - ( x ) .  

Define some subsets of S(B) (n = 0,1,2, . . .): 

. (2.3) 
U E S(R), the solution 

unbounded, i.e. j3 # 0, and has exactly n zeros 

corresponding to U is 

For the potential U E 
equation by the formulae 

Mn, one can define another two solutions of Schrodinger’s 

+ ( x )  = l + l - ” z ~ l ~ ~ )  X W  = IsI-1’2xl(x). (2.4) 

Consider a set 
m 

M = U M., x M,. x P S L ( 2 ,  B) 
Lid 
”-d 

where PSL(2 ,B)  = SL(2,R)/{fid). M is an open and disconnected subset of 
S(R) x S(R) x PSL(2 ,  a), the biples (Ut, U-, T) being its points (the quantities inbroduced 
above and corresponding to the potentials U* will now acquire the ‘*’ indices). Now define 
an injective mapping from M into field configurations 

J : (ut, U-, T) + (T, (P) (2.6) 
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and the element T E PSL(2 ,  W) is regarded as a 2 x 2 real matrix (: : ) , ad -bc= l .  

The scattering will be studied for those field configurations which constitute the image F 
of the mapping .I. 

The Cauchy data (2.7) generate a solution to the equation (1.1) of the form 

o(r,x) = - logIn+(x+)Tn-(x-)l (2.9) 

where the cone variables x* = x i z f  are used. Note also that the solution (1.3) corresponds to 
the potentials U&) 0, which have virtual eigenvalues, and hence, this field configuration 
is not allowed. 

Now we are in a position to introduce asymptotic fields. For given U* E M,, and 

T = (: :), ad - bc = 1, define 

where 

Vi" = 
(-1)"'8+b2 - (-1y-a- + bd 

IS-I +b21S+1 
qin = 

IS-I - b%+I 
IS-I +b21S+1 

(-1)"-Lp-b2- (-l)"+at + a b  

b21S-l+ IS+I 4our = 
b218-1 - I &  
bzIS-I+ IB+I UOUI = 

(2.12) 

(2.13) 

Note that if a = 0. then Ai, does not solve d'Alemben's equation because of the term of 
Liouville type (1.3). The same is 'me for A,,, when d = 0. 
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Proposition. (1) If 0, Ai., and A,., are given by (2.8)-(2.13), then the asymptotic condition 
(1.4) is satisfied for all x ,  U E W, IuI < 1, except for a finite number of pairs ( x ,  U) that 
correspond to the straight lines of singularities of Ai. and Am,. 

(2) The asymptotic condition (1.4) defines uniquely the d'Alembert components of Ai. 
and Aout, as well as the parameters vin. qi,,, U,,, and pour, which specifies the Liouville 
components of A,, and AOut. 

The proof is a mere use of the asymptotics (2.2) and definitions (2.4), (2.8X2.13). 

The singular lines of Ai, are nothing but asymptotes for the singular curves of 0 when 
f -+ -CO. Likewise the singular lines of AOut serve as asymptotes for the same curves 
when t --f +CO. Explicit description of the boundary behaviour and singularities of the 
asymptotic fields may be found in appendices A and B. 

Formulae (2.10X2.13) define two mappings: from M into the set of in-fields, and 
from M into the set of out-fields, 

. 

JU : (U+, U-,  T) -+ ( ~ 5 ,  VU). (2.14) 

Here and below stands for either 'in' or 'out', and the zero-time fields 

are introduced. Both the mappings are injective. Indeed, for given Y I ~  and (on, the potentials 
U* can be obtained as follows: 

(2.15) 

(if the Liouville component is present, it must be dropped), then the matrix T can 
be extracted from the formulae describing the boundary behaviour of ZU and a (see 
appendix A). 

Denote the image of Ja as 3t. For the reasons mentioned in section 1, 3 n 3 n  = 0, 
i.e. scattering occurs in more than one space. Further, although the types of possible 
singularities of in-fields and out-fields are the same, their boundary behaviour may be of 
different types (see appendix A), i.e. fin # KUt. The intersection Fa = Fin n Foul can be 
described as follows: 

Ji1(FeX) = {(U+, U-, T) E M I abcd # 0) Mo.  (2.16) 

Thus, for the fields in J ( M &  the scattering occurs in two spaces, otherwise in three. 
We may now introduce the wave operators and S-matrix: 

W, = J~ J;' : -+ 3 (2.17) 

S = W i i  o Win = J0,1 o Ji' : E,, + Foul. (2.18) 

All these mappings are bijective, hence the scattering is complete. To discuss other properties 
of these mappings let us designate as Eh, E' and E: the time evolutions in the sets M, 3 
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and Tu,, i.e. 

(2.19) 

By definition, they are related as follows: 

E ' o  J = J o EA E; o Jn = Js o EA. (2.20) 

This, together with the definitions (2.17). (2.18), leads to the standard inter-Wining property 
of the wave operators and the S-matrix: 

E' o Wn = Ws o En 1 E' O"1 o S = S o E / , , .  (2.21) 

The insiders' favourite way of introducing wave operators is to use the limit of the type 

Win = lim E-' o I o Et, (2.22) 
'-+-CO 

where Z : 3i. -+ 3 is some identifying mapping, more or less natural. The most direct 
choice for I is Win itself. In this case the limit (2.22) becomes trivial (and useless) by virtue 
of (2.21). We suspect that there is no other natural or useful choice for 1. 

The time evolution is only a small part of the conformal group of the two-dimensional 
Minkowski space w, which is a symmetry group of Liouville's and d'Alembert's equations. 
In [7] we used a maximal conformal group 6 = 9 x 9 that consists of the mappings 
F : M2 -+ w$ of the form 

x +  -+ y+  = F+(X+) x-  3 y-  = F - ( x - )  

F' E 9 = (GIG E Diffy(lR). G" 6 S@)) 

where the cone coordinates on M2 are used, and Diffy(W) designates the group of 
orientation-preserving Cm diffeomorphisms of W. The intertwining properties (2.20). (2.21) 
can be generalized to include conformal transformations. Namely, for F = F' x F+ E 6, 
we have 

E F  o Wu = Wg o E[  E;, o S = S o  E L .  (2.23) 

These are a consequence of 

E F  o J = J O E :  E[ o Jn = J U O  E, F . 
The F-evolutions are defined as follows: 

E:(U+(x), U-(X) .  T) = ( U f ( x ) ,  u!(x), rF) 
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where [7] 

(here an i 

variables 
eviation of the kind aG(*) = lim,,*maG(x) is used), and in le cone 

Q ~ ( x + ,  X - )  = O P ( F + ( X + ) .  F - ( x - ) )  + 1 iog(aF+(x+)aF-(x-)). 

The asymptotic fields An are transformed in the same way as 0 when the Liouville 
component is absent. The response of AB to the conformal transformation in the presence 
of the Liouville component is described in appendix C. 

High symmetry of the S-matrix (2.23) suggests that it must be simple in some sense. 
However, it is rather senseless to speak about the simplicity of a mapping that come& 
different sets (e.g. Wn). So let us restrict the S-matrix to the set 3; (2.16) to obtain an 
auto-transformation. Then the mapping S' = Ji;' o So Ji, = Ji;' o JOut : MO + MO appears 
to have a remarkably simple form 

S'(U+, U-, T )  = (U+, U-, S'(T)) (2.24) 

where 

S'(T) = (" " )  
c' d' 

(2.25) 

d .  , l + b c  d = -  bC a'= - 
l + b c a  bc 

b' = b c' = c 

This is the very representation of the S-matrix as a transformation of the group SL(2, R) 
promised in section 1. It is easily seen from (2.24). (2.25) that S' has no b e d  points, so 
the full S-mahix (2.18) is non-rriviaI for any field configuration. 

It is not difficult to extend the above constructions to cover the field configurations 
corresponding to the potentials U* possessing the virtual eigenvalues. The reason for our 
excluding such potentials is that in this case we are able to embed the above results in the 
context of Hamiltonian theory. 

3. Hamiltonian interpretation 

In this section we show that the LFT Poisson structure [7] may be considered at the same time 
as a Poisson structure of d'Alembert's equation, so that the asymptotic fields are locally 
commutative and canonical. An essential constituent of the LFT Poisson structure is the 
second KdV Poisson structure. Let us begin with the description of the latter. 

For V E S(R), let 
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be a directional derivative of a C1-class functional f : M -+ W, M c S(W). Introduce also 
two more differential operators 

a Sf d*f=  l h  -- 
x+*m ax S U ( X )  

in those cases where this limit makes sense and exists. For example, this is the case if 
(a2/ax2)(sf/su(x)) E s@) as a function of x .  

Let f be a real functional defined on an open set M c S(R). We Mite f E U'(M) if 

(1) f is a C' functional with respect to the variable U E M ;  (a*/ax*)(Sf/SU(x)) E 

(2) the functionals d t f ,  d-f and dvf ,  V E S(R) satisfy condition 1 above, 

If the equality (d+d- - dLd+)f = 0 in condition 2 of this definition is replaced by 

The KdV Poisson bracket is defined on the algebras of admissible functionals U ' ( M )  

the following recursive conditions are fulfilled: 

S(w) as a function of x ,  and condition 2 below is satisfied; 

(dtd- - d-dt)f = 0 and for all V E S@) (d&dv - dvd*)f = 0. 

(d+ - d-)f = 0, then we obtain a definition of U"(M) c O ' ( M ) .  

and U"(M) as follows: 

(fs g) = (f? g) -+ ( f 7  g) -+ 4 ((f. 8)) 

( f , g )  = - /dxU(x)  [ 6 (&I - (-i]"] SU(n)  SU(x)  

(3.1) 
where 

((f,g)) ~ 4 f d - g  -d-fd+g. 
The last term in (3.1) vanishes on the algebra U"(M). 

The functional f(Ut, U-, T) defined on the space M (2.5) is said to be admissible 
in the sense 0' x U' (or 0" x 0") if it is U'-admissible (U"-admissible) with respect to 
the first and second arguments, and various 'partial' derivatives exist and commute. The 
overall Poisson bracket is defined as follows: 

1f-d = If3g)t - If,g)- + e  

where { .  , . )* is the KdV Poisson bracket (3.1) with respect to U*, 

(3.3) 
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(the square brackets designate the matix commutator), 
/ o  0 0 0 )  

(3.4) 

(nine non-dynamical real parameters p, U ,  U ,  q ,  s, h l ,  hz, kl, kz appearing in (3.4). (3.3, are 
specified in [7]), and lastly the ‘cap’ operation is defined as follows: 

(the upper ‘f’ correspond to the indices of U*). The last two ‘trace’ terms in (3.2) vanish 
for the functionals from 0” x Of’, and hence in this case no parameters participate in the 
definition of the Poisson bracket. The formula (3.3) alone equips SL(2, R) with the smcture 
of the Poisson Lie group. 

The bracket just described is degenerate [7]. To obtain a non-degenerate Poisson 
structure one should single out from M a particular phase space, i.e. a minimal set invariant 
under the Hamiltonian flows. Note that the splitting of M into phase spaces depends on 
the choice of the algebra of admissible functionals. 

( x ) ,  x * l ( x )  are admissible 
in the sense 0’ x U’; T and Q * ( x )  are admissible in the sense 0” x U” (it is implied that 
x-dependent quantities should be ‘smeared’ by the test function from S(R)). It is now clear 
that we must exclude from ow consideration the field configurations having the Liouville 
component, because qg depends on CY+ and 8+. This is not the whole story. After having 
a look at (2.10). (2.11). one could expect that xu, ’ p ~  are 0“ x U”-admissible. This is 
not exactly so. When q, have singularities, the variational derivatives of their smeared 
versions are not smooth, contrary to our definition of admissible functional (the singularities 
of variational derivatives are of the same type as those of variational derivatives of R, ‘p, 

see [7]). An even worse problem with the singular fields is that of non-positiveness of the 
Hamiltonian [7,11,12]. More exactly, the Hamiltonian of the model is positive only on the 
phase spaces that are subsets of MO XM, x PSL(2 ,  R) [7]. All non-singular fields enter this 
set and are characterized by an additional condition: 4, d > 0, b ,  c > 0. In what follows 
we assume that only non-singular fields are considered, so that the smeared versions of no, 
‘po are U” x O”-admissible. However, for the sake of brevity, we shall be omitting the 
smearing. 

The functionals a* and 8* (2.2) are not admissible; ,5’*, 

Now we are going to demonstrate that the brackets 

[ A r ( x t ,  x - ) ,  A p ( y t ,  y - ) ]  = 4 sign (xt - y + )  - 4 si g (  n x -  - y - )  (3.7) 

which are appropriate for the d‘Alembert fields, are indeed valid. The starting point is the 
bracket (3.3) together with the following ones [7]: 

I Q t ( X ) ? Q t ( Y ) )  = Q+(x) k3 Q + ( Y ) P @  - Y )  

IQ&)? W Y ) )  = - P @  - y ) Q - ( x )  @ W Y )  

WtW?Q-(Y))  = o  IQ+(x)?TI = o  
(3.8) 
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where p ( x )  = rTS(x) - r S ( - x ) .  6%) being the step function: S(x) = 1 if x z 0, and 
S(x) + S ( - x )  = 1. The first two brackets in (3.8) possess a remarkable property of 
invariance under the action of the Poisson group S L ( 2 ,  W), i.e. 

w t (x )T?n t (Y)Tl  = Q + ( x ) T @  Qt(y)Tp(x - Y) 

(rQ-(x)?Tn-(y)J = - p ( x  - j ) T Q - ( x ) @  TQ-(y). 
(3.9) 

For definiteness, we now resbict our consideration to the in-field Ai,. The out-field is treated 

in the same way. The column (A) @ (A) and the row (1,O) @ (1,O) are eigenvectors of 
the matrix p ( x ) ,  i.e. 

(LO) 8 (1, o)p(x)  = 4 sign (x)(l, 0) @ (1.0). 

After convolution of these eigenvectors with the row and column (3.9) we obtain 

Another bracket we need is 

(3.1 1) 

A non-zero result in (3.11) might arise only from the Poisson brackets between the matrix 
elements of T. Note that the left multiplier depends on T via the combination c / a ,  whereas 
the right one via b l a ,  hence (3.1 1) is a consequence of the bracket ( c la .  b / a )  = 0. After 
due rearrangement the bracket [A&+, I-), Ag.(y+, y - ) }  amounts to a sum of the brackets 
(3.10), (3.11), and we obtain (3.7). 

The transformation (2.25) preserves the Poisson structure (3.3) on SL(2, W), but it is not 
defined everywhere in SL(2, W). We are interested, however, in the scattering transformation 
for particular phase spaces. Let us describe those of them for which the fields are non- 
singular (i.e. necessarily U* E MO). Consider first the admissible algebra 0" x U". In 
this case the phase spaces coincide with the symplectic leaves of (3.2), which in turn are 
completely determined by the symplectic leaves of PSL(2, W). 

(1) b, > 0, Q > 0, c = x b  (the non-dynamical constant x > 0 is a label of the leaf); 

(3) b =0,  c > 0, a > 0; 
( 4 )  b = c = 0, a = const > 0. This is a zero-dimensional leafof P SL(2, W) labelled by 

a, which may be here regarded as non-dynamical (the leaves ( l t ( 3 )  are two-dimensional). 
Let, now, the admissible algebra be 0' x 0'. In this case the symplectic leaves of (3.2) 

are no longer determined by the leaves of PSL(2, W). Moreover, in [7] different sets of 
parameters that appear in (3.4). (3.5), and come now into action, were used for different 
leaves to obtain phase spaces that admit the Hamiltonian representation of the conformal 

(2) b > 0, c = 0, a > 0; 
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algebra A (equal to the Lie algebra of the conformal group 6). We assume that the set of 
parameters have been chosen for a particular phase space in the same way as ir 171. Thus 
these phase spaces cannot be considererd as symplectic leaves of some overall Poisson 
structure. The following are the phase spaces corresponding to the non-singular fields. 

(1) b > 0, c > 0, a > 0; 
(2) b > 0, c = 0, a > 0;  
(3) b = 0, c > 0, a > 0; 
(4) b = c = 0, a > 0 (note that a is here a ,dynamical variable, not just a label, as in 

the analogous item above). 
The scattering transformation (2.25) is a smooth symplectic auto-transformation of the 

phase spaces of type (1). For the spaces (2H4), the S-matrix cannot be represented in the 
simple form (2.24); and for the other spaces, fundamental fields are singular. 

4. Left- and right-movers 

The conventional way of studying the d’Alembert field A(? ,  x )  is to split it into the left- 
and rightward components 

A ( t , x ) = A + ( x + t ) + A - ( ~  - t )  (4.1) 

so that the left- and right-movers possess the following Poisson brackets: 

{A&), A*(y ) ]  = i 4 sign(x - y )  { A + @ ) ,  A - ( y ) ]  = const. (4.2) 

The free field bracket (3.7) is a consequence of these, but not vice versa. The constant 
in (4.2) is not assumed to be absolute (non-dynamical), i.e. it is not necessarily a central 
element of the Poisson s’uucture; however, a more traditional choice for it is zero. 

Let us discuss the splitting problem (4.1), (4.2) for the non-singular in-field described 
in the previous sections (the label ‘in’ will be omitted). In section 3 we agreed that the 
admissible algebra 6” x 6” was sufficient for satisfactory Hamiltonian description of the in- 
field, in particular, we managed to reproduce the correct free-field bracket (3.7). A striking 
result is that, for the algebra 0“ x ON, the splitting (4.1), (4.2) is only possible if bc = 0. 
and all solutions have the following form. 

If b > 0, c = 0, then 

A + @ )  = - 1% Ix+(x)l t G(Q) a 
Q=2log l j - l .  

A - ( x )  = - log 1(1,0)7’Sl-(x)l - G(Q) 
Throughout this section G denotes an arbitrary smooth non-dynamical function of the 
dynamical variable(s) indicated. 

If b = 0, c > 0, then 
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If b = 0, c =  0. then 
A + ( x ) = - I o g l ~ + ( x ) I - ~ I o g I a I + G  

A - @ )  = -log I+-(x)l - +log la1 - G. 
Recall that in this case a, as well as G, is an absolute constant. 

Let, now, the admissible algebra be U' x U'. In this case the splitting (4.1). (4.2) is 
always possible, but the extent to which it is non-unique becomes greater. In what follows 
we shall be using the following combinations of the parameters participating in the definition 
of the Poisson bracket (3.2X3.6): 

j = hl + hz - p + U 
m = hl - h2 - p - v 

I = kl + kz - U + q  
n = kl - kz - U - 4 .  

For the admissible algebra 0' x U', all solutions of the splitting problem (4.1), (4.2) have 
the following form. 

If b > 0, c > 0, then 

Note that m2 + n2 # 0 if the parameters of the Poisson bracket are chosen as in [7] (when 
m2 + n2 = 0 the splitting we are looking for does not exist). 

I f b  0, c = 0, then 
A+(x) = - 1% Ix+(x)~ + G(NI, Nzl Q) 

A-(x )  = - W ( l , O ) T n - ( x ) l  - G W I ,  Nz, Q) 

NI =logI,5+I+4mloglal -4jloglbl 

N2=logI&I+4nlogla  -41loglbl 

A+@) = - log In+(x)T (:)I + G W I ,  Nz, Q) 

A - k )  = - log I+-(x)l- G(Ni. Nz, Q) 

NI =logIp+I-4mlog[al -4jloglcl  

Nz = log I@- I - 4n log la1 - 41 log IcI 

a 
Q = 2 1 0 g l b l .  

If b = 0, c > 0, then 

a 
Q = 21og 1 - 1  

C 
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I f b  = 0, c = 0, then 

A+.(*) - 1% Ix+(*)l- 1% lbl + G W I ,  Nz,  Q )  

A - @ ) = -  l o g l ~ - ( n ) l - t l o g l a l - G ( N ~ , N ~ , Q )  

N I  = log la1 NZ = l log IS+I - j log 1p-I 
1 

j z + P  Q = - L -  ci log IS+I + 1log IS-I). 

Note that j z  + 1' # 0 if the parameters of the Poisson bracket are chosen as in 171 (when 
j 2  + 1' = 0 the splitting also exists, but we do not describe it here). 

In all cases considered, the function G must not depend on Q if one wants the constant 
in (4.2) to be zero. Also, in all cases the functionals N I  and NZ commute with the free 
field, and Q generates shifts of it, i.e. 

INi,A(t ,x) l=O INz.A(t ,x) l=O { Q , A ( t , x ) l =  1. 

Moreover, N I  and NZ are the only independent functionals that commute with the 
fundamental field Q: 

{ N I ,  Q(t,x)I = 0 INz, W,X)I = 0. 

Being a purely infinite-dimensional effect, this by no means conh-adicts either non- 
degeneracy of the bracket or the fundamental character of the field 0. 

Appendix A 

Boundary behaviour of Ai.. 
. 

( l )c#O,  U # O W  

A i o l t , x ) = -  log(B,'l(x-qt)2-(t-r.+)21)+s 10 10 +( n 1 
(-l)"-cx- + b/a q; - r . .  = - + + - - ( -  I)'%+ + a / c  

IB+I IS-I 4i. + rin - 

( -I)"-O-+afb 
IS- I 

4' - c.- = 
(-1)"+O+ + c f a  

qi; + c; = m m IBtI 
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(4) b = 0 

(5)  d = 0 

a- 8t 
B- B$ = IBFI qL, = - - qo;, = s, 

(LJ,,~ and q.,,,, are given by (2.13)). 
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Appendix B 

The zero-time in-fields defined in section 2 may have a finite number of singular points. 
They may be of the following types only: 

(1) 
I 

rp,.(x) = - log Ix - q1 + @ ( x )  T , " ( X )  = - - - @'(x) + ? ( x )  
x - q  

where 5, @ are Cm-smooth in a neighbourhood of 4. and ?(q) = 0. The singular point 
x = q generates a lightlike singular line of A,n, sloping to the left (it is assumed that the t 
axis is directed upwards and the x axis rightwards). 

(2) 

1 

x - 4  
(D&) = - log Ix - q1 + @ ( x )  % ( X )  = - + @ ' ( x )  + ? ( x )  

where 5, @ are Cm-smooth in a neighbourhood of q. and ?(q)  = 0. The singular point 
x = q generates a lightlike singular line of Ai,, sloping to the right. 

(3) 

(Din(x) = - 21og Ix - 41 + @ ( x )  @'(q) = 0 q,(q)  = 0 

where @, as well as ni., is Cm-smooth in a neighbourhood of q. The singular point of this 
type generates two lightlike singular l i e s  of Ai., which intersect in the point x = q at the 
instant t = 0. 

(4) 

where the dots stand for either some arbitrary smooth (in a neighbourhood of qin) functions 
or one of the preceding formulae for the singular behaviour of qqn and ni. (with q replaced 
by qi.). There may be only one singular point of this type, and if it is actually present, 
then the in-field must have the boundary behaviour of type 5 (see appendix A) with the 
same qj. and vi.. The singular point of this type generates a timelike singular line of Ai. 
characterized by the velocity vin. It also generates lightlike singular lines if the dots in the 
above formulae represent non-smooth functions. 

The out-fields may have a finite number of singular points of the same types. 
Tables B 1 and B2 show the number of singular lines of Ai. and AOut as a function of 

T. It is assumed that U* E Mn*. 

Table 81. 

The number of singular lines of Ain 
Lightlike Lightlike 

the left (\I 
T sloping to sloping to Timelie Total 

the rieht (/I 

a = O  n+ n.. 1 n + + n - + I  
a > O , b > O , c > O  n+ n- 0 n+ +n- 
Q > O , b > O , c < O  " + + I  n.. 0 n+ +n- + 1 
a > O , b < O , c > O  n+ n- + 1 0 n+ +n- + I 
a > 0 , b  < 0,c C O  n+ + 1 n.. + I 0 n + + n - + 2  
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Table 82. 

The number of singular lines of Aou, 
Lightlike Lightlike 

T sloping to sloping lo nmeLike Total 
he left (\\ the rieht (I) 

d = O  n+ n- 1 nt t L t 1 
d > O , b > O , c > O  n+ n. 0 nt  t n- 
d > O , b > O , c < O  n+ " - + I  0 nt  t n- t 1 
d > O , b < O , c > O  n + t l  8-  0 n + t n - t 1  
d > O , b < O . c c O  n + + l  fl- t 1 0 n + t n - + Z  

Appendix C 

The ingredients of Ai, (when a = 0) and Aooc (when d = 0) are Qansfonned under conformal 
transformations as follows: 

Uh - U 
V F  = - 

1 - ui.v 
A+ - A; 
A+. + A; 

v =  

where As and Bs are defined through F as follows: 
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